Progressive Collapse of Multi-Story Steel Frame Buildings: Phase II

Objective
Develop a numerical approach that captures the underlying behavior and resistance mechanisms in progressive collapse.

Progressive Collapse
The spread of an initial local failure, eventually resulting in the collapse of an entire structure or a disproportionately large part of it.

Murrah Federal Building, Oklahoma City, 1995

Selected Building Model

Structural Properties
- Plan: 120'-00" × 120'-00"
- Span length: 30'-00" (4 × 4 bays)
- Height: 146'-00" (1st story: 20' others 14')
- Outer connections - moment resisting
 - seismic design category: B
 - exposure category: B
 - basic wind speed: 90 mph
- Inner connections - resisting shear
- Beams, girders and columns (A992)
- Slab: 4 ksi normal weight concrete

Results
- Lateral load resistant frames showed better performance.
- Rigid - hinge vs. moment - shear connections would not be a critical factor if the initial damage is localized.
- Column size transition zones should be addressed.